218 research outputs found

    Peeling fingers in an elastic Hele-Shaw channel

    Full text link
    Using experiments and a depth-averaged numerical model, we study instabilities of two-phase flows in a Hele-Shaw channel with an elastic upper boundary and a non-uniform cross-section prescribed by initial collapse. Experimentally, we find increasingly complex and unsteady modes of air-finger propagation as the dimensionless bubble speed, Ca, and level of collapse are increased, including pointed fingers, indented fingers and the feathered modes first identified by Cuttle et al.(J. Fluid Mech., vol. 886, 2020, A20). By introducing a measure of the viscous contribution to finger propagation, we identify a Ca threshold beyond which viscous forces are superseded by elastic effects. Quantitative prediction of this transition between 'viscous' and 'elastic' reopening regimes across levels of collapse establishes the fidelity of the numerical model. In the viscous regime, we recover the non-monotonic dependence on Ca of the finger pressure, which is characteristic of benchtop models of airway reopening. To explore the elastic regime numerically, we extend the depth-averaged model introduced by Fontana et al. (J. Fluid Mech., vol. 916, 2021, A27) to include an artificial disjoining pressure which prevents the unphysical self-intersection of the interface. Using time simulations, we capture for the first time the majority of experimental finger dynamics, including feathered modes. We show that these disordered states continually evolve, with no evidence of convergence to steady or periodic states. We find that the steady bifurcation structure satisfactorily predicts the bubble pressure as a function of Ca, but that it does not provide sufficient information to predict the transition to unsteady dynamics which appears strongly nonlinear.Comment: 28 pages, 15 figure

    Fine-grained Energy / Power Instrumentation for Software-level Efficiency Optimization

    Get PDF
    In the pursuit of both increased energy-efficiency, as well as high-performance, architects are constructing increasingly complex Systems-on-Chip with a variety of processor cores and DMA controllers. This complexity makes software implementation and optimization difficult, particularly when multiple independent applications may be running concurrently on such a heterogeneous platform. In order to take full advantage of the underlying system, increased visibility into the interaction between the software and hardware is needed. This paper proposes on-line and off-line fine-grained instrumentation of SoC components in hardware (e.g. as part of the debug & trace infrastructure) in order to enable improvements and optimization for energy efficiency to be undertaken at higher levels of abstraction, i.e. the programmer and runtime scheduler. Energy counters are incorporated for each component that keep track of energy use. These counters are indexed by customer number tags, that are used to distinguish between the transactions executed on any given component by client applications running in a multitasking SoC environment. The contents of the counters for each augmented component, correlated with the appropriate consumer-numbers, are extracted from a running SoC under test via existing debug & trace interfaces like GDBserver, JTAG and various proprietary trace probes. In addition, auxiliary processing on-chip computes local and global energy figures and offers them through a 4-layer abstraction stack so that programmer-level finegrained energy measurement is made available. Both the O/S scheduler and programmers can adapt their policies and coding styles for their desired energy/performance tradeoff

    Implementation and performance of the Detector Control System for the electromagnetic calorimeter of the CMS experiment

    Get PDF
    In this presentation we describe the main design objectives, the detailed specifications and the final layout of the Detector Control System (DCS) for the electromagnetic calorimeter (ECAL) of the CMS experiment. Emphasis is put on the system implementation and specific hardware and software solutions in each of its sub-systems. The latest results from the tests of final prototypes of these subsystems during the 2006 ECAL test-beam programme, as well as the installation and commissioning of the whole DCS at the CMS experimental construction site are discussed

    CMS physics technical design report, volume II: Physics performance

    Get PDF
    CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and taus, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model

    Detector Control System for the Electromagnetic Calorimeter of the CMS experiment

    Get PDF
    The Compact Muon Solenoid (CMS) is one of the general purpose particle detectors at the Large Hadron Collider (LHC) at CERN. The challenging constraints on the design of one of its sub-detectors, the Electromagnetic Calorimeter (ECAL), required the development of a complex Detector Control System (DCS). In this paper the general features of the CMS ECAL DCS during the period of commissioning and cosmic running will be presented. The feedback from the people involved was used for several upgrades of the system in order to achieve a robust, flexible and stable control system. A description of the newly implemented features for the CMS ECAL DCS subsystems will be given as well

    Pion emission from the T2K replica target: method, results and application

    Get PDF
    The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.Comment: updated version as published by NIM

    Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Get PDF
    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.Comment: 18 pages, 12 figure

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    NA61/SHINE facility at the CERN SPS: beams and detector system

    Get PDF
    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March 2013
    • 

    corecore